

目 录

第一节《THXFM-1型 多功能附面层实验装置》概述	2
一、装置组成	2
二、装置工艺流程	3
三、装置参数	4
四、装置主要器件说明	4
第二节 平板附面层速度分布测定实验	5
一、实验目的	5
二、实验装置与流程	5
三、实验原理和方法	5
四、实验操作步骤和注意事项	7
五、实验数据记录	8
一	
七、思考题	
第三节 绕流圆柱体表面压力分布测定实验	
一、实验目的	
二、实验装置与流程	
三、实验原理和方法	
四、实验操作步骤和注意事项	
五、实验数据记录	
六、实验报告	12
七、思考题	
第四节 绕流机翼表面压力分布测定实验	
一、实验目的	
二、实验装置与流程	
三、实验原理和方法	
四、实验操作步骤和注意事项	
五、实验数据记录	
六、实验报告	
七、思考题	16
₩ -	16

第一节《THXFM-1型 多功能附面层实验装置》概述

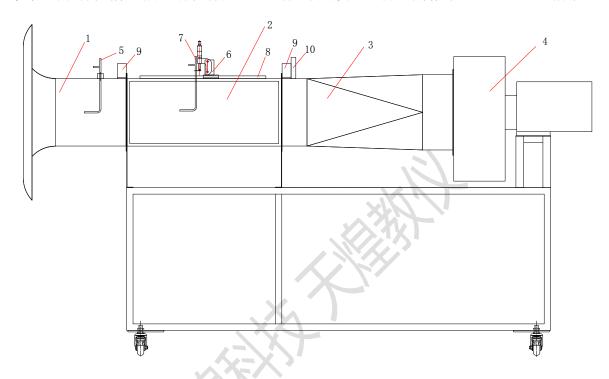
在许多不同的工业领域内,都涉及到空气动力学,如:飞行器的气动力特性测试、高层建筑物及大跨度结构物的风力载荷测试、交通工具的气动阻力及稳定性测试、流体机械叶轮机的性能测试、环保工程的污染源扩散测试、计量工程的各种测速仪器的校验测试等。

本设备为一直流式低速风洞,可利用该风洞进行平板附面层、圆柱、机翼等模型的空气动力学实验。

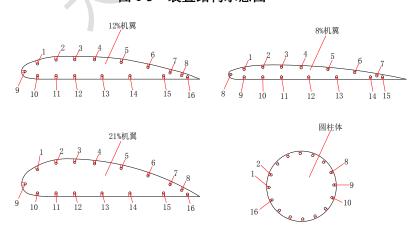
图 1-2 模型效果图

一、装置组成

本实验装置由实验对象和电控箱组成。实验对象由实验风道(收敛段、实验段、过渡段)、 实验件、速度测针、附面层探针、座标器、导轨、风机、风门、多管测压计、实验台等组成。电

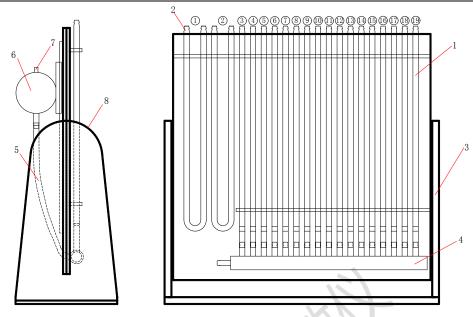

天煌科技 - 2 - 天煌教仪

控箱由漏电保护器、电源开关、电源指示灯等组成。


二、装置工艺流程

实验台是一个吸气式风洞,空气经收敛段、实验段、过渡段,最后通过风机排入大气。在实验段内,可以得到一平行均匀的气流。调节风机出口的风门,可以改变气流的速度。在实验段内安设不同的测试件和相应的测试装置,可进行不同的实验。装置结构如图 1-3、1-4、1-5 所示。

1—收敛段、2—实验段、3—过渡段、4—离心通风机、5—测速毕托管、6—座标器、7—附面层速度探针(毕托管)、8—导轨、9—卷尺盒、10—电池盒


图 1-3 装置结构示意图

1-12%机翼模型、2-8%机翼模型、3-21%机翼模型、4-圆柱模型

图 1-4 实验试件模型示意图

1—测压管、2—U型压差计、3—支架、4—连通管、5—输水管、6—小水箱、7—通气孔

图 1-5 测压系统结构示意图

三、装置参数

装置外形尺寸: 1500mm×600mm×1200mm。

平板模型: 500mm×60mm。

圆柱体模型: ¢60mm×60mm,在圆柱体上沿圆周表面均匀地开有 16 个测压小孔,并在端部引出测压管。

机翼模型 1: 厚弦比为 8%, 在机翼上下表面均匀分布有 15 个取压孔, 并在端部引出测压管。 机翼模型 2: 厚弦比为 12%, 在机翼上下表面均匀分布有 16 个取压孔, 并在端部引出测压 管。

机翼模型 3: 厚弦比为 21%, 在机翼上下表面均匀分布有 16 个取压孔, 并在端部引出测压管。

测压系统: 测压板上固定有 2 个 U 型管和 17 根测压管, 17 根测压管均与测压板背面的小水箱相连,小水箱高度可以上下任意调节。

四、装置主要器件说明

1. 离心通风机的使用说明

开启离心通风机后,风机出口风门应出风。如若进风,请改变电机的相序,在拆下电机接线 盒前,必须先切断电源。

2. 测压系统的使用说明

多管测压计,设有可改变角度的测压排管及调平装置,当测取某点压强(表压)时取该点测压管与大气测压管读数之差,即为该测压点的压强(表压)。

天煌科技 - 4 - 天煌教仪

第二节 平板附面层速度分布测定实验

一、实验目的

- 1. 通过实验证实: 当粘性流体绕物体流动时,靠近物体壁面处确有"附面层"存在。从而加深对"附面层"基本特征的理解。
 - 2. 测定平板附面层的速度分布。
 - 3. 测定平板附面层厚度沿流动方向的变化。
 - 4. 掌握毕托管和测压计的测速原理和测量技能。

二、实验装置与流程

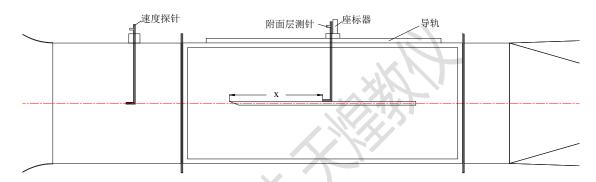


图 2-1 平板附面层速度分布装置示意图

如图 2-1 所示,实验时在风洞的实验段内装入一块带有尖劈的光滑平板,平板与上壁面平行。在实验段上壁面处安设导轨,由千分尺改制的座标器可在导轨上沿实验段作轴向移动。一支附面层速度测针装在座标器上,此速度测针可在实验段内上下、前后移动,其空间位置(x,y)可在标尺上读出。

三、实验原理和方法

1. 平板边界层的流速分布

实际流体因存在粘性,紧贴壁面的流体将粘附于固体表面,其相对速度为零,沿壁面法向随着与壁面距离的增加,流体的速度逐渐增大,当距离为 δ 时,其速度达到未受扰动的主流流速 u_0 ,这个厚度为 δ 的薄层称为边界层,通常规定从壁面到 $u_x=0.99$ u_0 处的距离作为边界层的厚度。

边界层的厚度沿平板长度方向是顺流渐增的,在平板迎流的前段是层流边界层,如果平板足够长,则边界层可以过渡到紊流,表示转变的特征参数是临界雷诺数 Re_x ,如图 2-2 所示。

天煌科技 - 5 - 天煌教仪

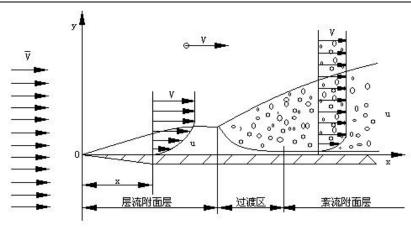


图 2-2 平板边界层的流速分布图

若量测断面坐标为x,则该断面雷诺数 Re_x 为

$$Re_x = \frac{u_0 x \rho}{\mu} \tag{2-1}$$

式中: u_0 ——量测断面 x 处的边界层外主流流速,m/s;

x——量测断面距平板前缘点的距离,m;

 ρ ——气流密度,kg/m³;

 μ ——气流黏度,Pa·s。

实验证明,对于从层流边界层向紊流边界层过渡的临界雷诺数大小 Rex 不是一个唯一的数, 目前还不能完全从理论上解决,尚须靠实验来确定,它与层外势流紊流度和平板粗糙度等有关, 对平板大约为 5×105~3×106。

紊流边界层内的流速分布用指数律表示为

$$\frac{u_x}{u_0} = \left(\frac{y}{\delta}\right)^{\frac{1}{n}} \tag{2-2}$$

式中: y——量测点距平板的距离, m;

 u_x ——测点流速,m/s;

 δ ——量测断面 x 处的边界层厚度(即 $u_x=0.99$ u_0 处的 v 值), m。

通过对该断面流速分布的测定,可确定指数 n 的大小(当 Re_x 为 10^5 时,其光滑壁面的 n 值 约为 7)。

2. 毕托管与测压计的测速原理

根据伯努利方程可得

$$\frac{p_1}{\rho g} = \frac{p_0}{\rho g} + \frac{u^2}{2g} \tag{2-3}$$

__毕托管处的冲压头,即动压强和静压强之和,Pa; __6 _

 p_0 —流体的静压强, Pa;

 ρ ——气流的密度,kg/m³;

g——重力加速度, m/s²;

u——测点的流体速度,m/s。

即测点流速为

$$u = \sqrt{\frac{2(p_1 - p_0)}{\rho}} \tag{2-4}$$

 p_1 用测压计测定,根据静压基本方程 p_1 为

$$p_1 = p_0 + \rho_{\rm w} gR \tag{2-5}$$

式中: ρ_w ——测压管内水的密度, kg/m³;

R——测点测压管与大气测压管的读数差,m; 当测压排管与水平线的夹角为 α 时,R值为 R_1 $\sin \alpha$ (其中 R_1) 为相应测压计斜管读数差),联立式(2-4)、(2-5)得到

$$u = \sqrt{2gR_1 \frac{\rho_{\rm w}}{\rho} \sin \alpha} \tag{2-6}$$

四、实验操作步骤和注意事项

- 1. 熟悉实验设备各部分的作用与调节方法。
- 2. 向小水箱和 U 形管 1、2 中加水至 1/2 液位处,检查 U 形管 1、2 和测压管内有否气泡,若有气泡,应排出气泡使各测压管水柱高度齐平。
- 3. 将测速毕托管和附面层速度探针分别与 U 形管 1、2 相连。这样,测得来流速度 u_0 和附面层内气流速度 u_v 。
 - 4. 开启风机,将来流风速调整到 20m/s 左右(即 U 型差压计读数为 30mm 左右)。
- 5. 移动座标器,使测点距平板前缘点的距离为 x=0.1L(L= 平板试件长度),慢慢地旋转千分尺,使测针轻轻地与平板接触,记下初始高度位置,并记下各测压管读数。然后将测针逐渐升高,每隔 $y=0.1\sim0.5$ mm 测量一次(附面层较薄时,取每隔 0.1mm,附面层较厚时可取大些),直到附面层测针的读数值达到最大且不变后,继续读取 $1\sim2$ 组数据。
- 6. 分别将附面层测针调到 x=0.2L、0.4L、0.6L、0.8L 处,重复步骤 5,沿 x 一共测定五条以上速度分布曲线,将实验数据记录到实验数据记录表中。
 - 7. 实验完毕后, 关闭风机。

天煌科技 - 7 - 天煌教仪

五、头短 数据记求						
专业		姓名	I		学 号	
日期		地点	·		装置号	
同组同学						
平 板 长 度 L = 0.5 (m)		室	温 t=	(℃)	气体密度ρ= (kg/m ³)
U 型差压计 1 读数=	(mm)				测压板倾斜角度α=	(°)

		决致 (IIIII) 奶压依颅析用反ti			1/11/20					
	测点 0.1L		测点 0.2L		测点 0.4L		测点 0.6L		测点 0.8L	
序号	距平板 距离 d(mm)	速度 探针 差压 (mm)								
1										
2										
3										
4										
5						y /\\				
6										
7										
8										
9					X					
10										
11										
12			y							
13										
14										
15				l.						

六、实验报告

- 1. 在五个不同x处,根据实验结果画出速度分布曲线u=f(d)。
- 2. 根据附面层厚度的定义确定各x处的 δ 值,并作出平板附面层厚度 δ 与流动方向x的变化曲线 δ =f(x)。

七、思考题

- 1. 在测量附面层内动压过程中,怎样在实验过程中直接读出附面层的厚度?
- 2. 当流体绕流实验平板时,由层流变为紊流的转折取决于哪些因素?
- 3. 根据实验速度分布线,如何确定该处的附面层厚度?

天煌科技 - 8 - 天煌教仪

第三节 绕流圆柱体表面压力分布测定实验

一、实验目的

- 1. 熟悉多管测压计测量圆柱体表面压强分布的方法;
- 2. 绘制压强分布图,并计算圆柱体的压强系数 C_p 。

二、实验装置与流程

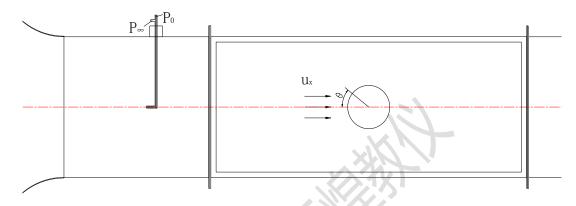


图 3-1 圆柱表面压强分布测定装置示意图

如图 3-1 所示,将实验用的圆柱体装入实验段测板上,将测压管与多管压力计按 θ 变化顺序依次相连,就可测得圆柱体表面的压力分布。

三、实验原理和方法

小型风洞经风机产生的气流经过收敛段进入实验段,圆柱体安装在实验段的中部。外界的气流速度近似为零,其压强可认为是大气压强。实验段中分布比较均匀的气流,速度为 u_x ,压强为 p_∞ 。气流绕圆柱体流动时,流动变得复杂起来。本实验为了测量圆柱体表面各点的压强分布,在 圆柱体表面均匀的开设多个测压孔,测压孔通过一个细铜管接出与多管压力计相连,即可将绕圆柱体整个壁面上的压强分布测出。

理想流体平行流绕圆柱体流动时,圆柱体表面的速度分布规律是

$$u_{\theta} = -2u_{x}\sin\theta \tag{3-1}$$

式中: u_{θ} —测点表面流速, m/s;

 u_x ——气流来流流速,m/s;

 θ ——测点与来流方向的夹角。

根据伯努利方程,圆柱体表面上任何点的压力 p 可写为

$$\frac{p}{\rho} + \frac{u_{\theta}^2}{2} = \frac{p_{\infty}}{\rho} + \frac{u_x^2}{2} \tag{3-2}$$

式中: p——圆柱体表面上测点的压力,Pa;

 p_{∞} —气流来流静压,Pa;

 ρ ——气流的密度, kg/m^3 。

由此可得

$$p - p_{\infty} = \frac{1}{2} \rho u_x^2 (1 - \frac{u_{\theta}^2}{u_x^2}) = \frac{1}{2} \rho u_x^2 (1 - 4\sin^2 \theta)$$
 (3-3)

定义无因次压力系数 Cp为

$$C_p = \frac{p - p_{\infty}}{\rho u_x^2 / 2}$$

对于理想流体绕圆柱体流动, 其无因次压力系数

$$C_p = 1 - 4\sin^2\theta \tag{3-4}$$

对于实际气体由于粘性的存在,当其绕圆柱体流动时,气流不能完全象理想流体那样贴附在 圆柱表面流动,气流在圆柱体后面将发生分离和产生旋涡,形成旋涡区。这样,破坏了圆柱体前 后压力分布的对称性,形成了压差阻力。

实际气体的压力分布可以通过实验测得。其压力系数

$$C_{pi} = \frac{p_i - p_{\infty}}{\rho u_x^2 / 2} = \frac{p_i - p_{\infty}}{p_0 - p_{\infty}} = \frac{h_i - h_{\infty}}{h_0 - h_{\infty}}$$
(3-5)

式中: p_i ——圆柱体某一测点压强, Pa;

 P_0 ——气流来流总压,Pa;

 h_0 —气流来流总压 p_0 的测量值(表压), mmH_2O ;

 h_{∞} ——气流来流静压 p_{∞} 的测量值(表压), mmH_2O ;

 h_i ——圆柱体表面上某一点的压力 p_i 的测量值 (表压), mmH_2O

对本实验装置,来流动压为

$$\frac{1}{2}\rho u_x^2 = p_0 - p_{\infty} = \rho_{\rm w} g \Delta h \tag{3-6}$$

来流流速为

$$u_{x} = \sqrt{2g\Delta h \frac{\rho_{w}}{\rho} \sin \alpha}$$
 (3-7)

式中: ρ_w ——测压计内水的密度, kg/m³;

α——测压计排管与水平线的夹角;

 $\triangle h$ ——总压与静压在 U 型压差计上的差值,m。

雷诺数
$$Re = \frac{du_x \rho}{\mu} \tag{3-8}$$

式中: d——圆柱体的直径, m;

 μ ——流体的黏度, Pa·s。

对于空气,空气的黏度

$$\mu = 1.72 \times 10^{-5} \times \left(1 + 0.0028t - 0.000015t^{2}\right) \tag{3-9}$$

式中: t——气流温度, ℃。

四、实验操作步骤和注意事项

- 1. 熟悉实验设备各部分的作用与调节方法。
- 2. 向测压板上的小水箱及 U 型测压管 1、2 中加水至 1/2 液位处,检查各测压管内是否有气泡,应排出气泡使各测压管水柱高度齐平。
- 3. 据倾斜测压需要,可上下滑动小水箱,改变测压管中的水位高度。将实验件装入实验段中,按测点 $1\sim16$ 顺序连接到测压管的 $3\sim18$ 上,测压管 19 通大气。
- 4. 开启风机后,将测速毕托管的 p_{∞} 端与 U 形管 1 的其中一端相连(另一端保持与大气相通),记下 h_{∞} 值(注意读数的正负值),再将测速毕托管的 p_{0} 端与 U 形管 1 的另一端相连,测出(h_{0} - h_{∞})值,同时测出各测压点的读数值 h_{i} 。
- 5. 实验时需注意风量应逐渐增加,不要使测压管内水面超过管顶,以免引起测压管内产生 气泡而影响正常实验。
 - 6. 记下测压板倾斜角度和空气温度,将实验数据记录到实验数据记录表中。
 - 7. 实验完毕后,关闭风机。

五、实验数据记录

专业		姓名		学	号	
日期		地点			置号	
同组同学						
圆柱体直径 D=0.06 (m)	室温 t=	(℃) ∄	则压夹角α=	(°) 气	体密度ρ=	(kg/m^3)
	θ (°)	$h_{\infty}(\text{mm})$	h_0 - h_∞ (mm)	$h_i(mm)$		

天煌科技 - 11 - 天煌教仪

六、实验报告

- 1. 整理实验数据,列出一组完整的计算式。
- 2. 画出 $C_p = f(\theta)$ 曲线图,并与理想流体的压力系数曲线相比较。

七、思考题

- 1. 实际流体的压力系数曲线与理想流体的压力系数曲线有何不同, 试分析出现此差异的原因?
- 2. 改变角度后, 曲线会有什么变化?

天煌科技 - 12 - 天煌教仪

第四节 绕流机翼表面压力分布测定实验

一、实验目的

- 1. 学习测量流体绕流机翼时机翼表面压力分布的方法。
- 2. 测定在不同冲角下机翼的表面压力分布。

二、实验装置与流程

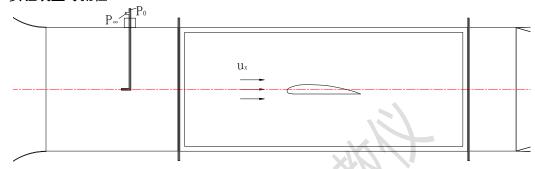


图 4-1 绕流机翼表面压力分布装置示意图

如图 4-1 所示,将实验用的机翼模型装入实验段内。在此机翼上沿翼型表面开有测压小孔,并在端部引出其测压管。将测压管与多管倾斜压力计相连,就可测得翼形表面的压力分布,并能旋转实验试件改变机翼的迎角进行一次新的工况测试。

本装置配有3种厚弦比的机翼,	八 III 十 00/	120/ 210/	廿 夕 油 上 始	/1/古井中丰 / 1 日	:::::::::::::::::::::::::::::::::::::::
本装置配有3种厚弦比的机翼,	分别为8%、	12%, 21%,	其各测点的;	x/l 值如表 4-1 þ	竹 / T 。

	厚弦比 8%的 x/l 值	厚弦比 12%的 x/l 值	厚弦比 21%的 x/l 值
测点 1	0.088	0.090	0.088
测点 2	0.193	0.194	0.193
测点 3	0.297	0.299	0.297
测点 4	0.408	0.410	0.408
测点 5	0.559	0.560	0.559
测点 6	0.709	0.710	0.709
测点 7	0.833	0.835	0.833
测点 8	0.013	0.900	0.899
测点 9	0.088	0.020	0.020
测点 10	0.193	0.090	0.088
测点 11	0.297	0.194	0.193
测点 12	0.451	0.299	0.297
测点 13	0.608	0.452	0.452
测点 14	0.797	0.609	0.609
测点 15	0.866	0.799	0.797
测点 16		0.933	0.931

表 4-1 各测点的 x/l 值

三、实验原理和方法

将机翼置于均匀定常的气流中,在机翼的表面可以测得其压力分布。测定实际流体绕机翼的压力分布具有很大的实际意义,因为压力分布反映了机翼的真实绕流特性。其压力分布常用无因次压力系数 C_{pi} 来表示。即

$$C_{pi} = \frac{p_i - p_{\infty}}{\rho u_{\chi}^2 / 2} = \frac{p_i - p_{\infty}}{p_0 - p_{\infty}} = \frac{h_i - h_{\infty}}{h_0 - h_{\infty}}$$
(4-1)

式中: u_x ——来流的流速, (m/s);

pi——圆柱体某一测点压强, Pa;

 p_{∞} —气流来流静压,Pa;

 P_0 —气流来流总压, Pa;

 h_0 ——气流来流总压 p_0 的测量值(表压), mmH_2O ;

 h_{∞} ——气流来流静压 p_{∞} 的测量值(表压), mmH_2O ;

 h_i ——圆柱体表面上某一点的压力 p_i 的测量值 (表压), mmH_2O

对本实验装置,来流动压为

$$\frac{1}{2}\rho u_x^2 = p_0 - p_\infty = \rho_w g \Delta h \tag{4-2}$$

来流流速为

$$u_{x} = \sqrt{2g\Delta h \frac{\rho_{w}}{\rho} \sin \alpha} \tag{4-3}$$

式中: ρ_w ——测压计内水的密度, kg/m³;

 ρ ——空气的密度, kg/m^3 ;

g——重力加速度, m/s²;

 α ——测压计排管与水平线的夹角;

 $\triangle h$ ——总压与静压在 U 型压差计上的差值,m。

雷诺数

$$Re = \frac{bu_x \rho}{\mu} \tag{4-4}$$

式中: b——机翼弦长, m:

 μ ——流体的黏度, $Pa \cdot s$ 。

对干空气,空气的黏度

$$\mu = 1.72 \times 10^{-5} \times \left(1 + 0.0028t - 0.000015t^{2}\right) \tag{4-5}$$

式中: *t*——气流温度, ℃。

四、实验操作步骤和注意事项

1. 熟悉实验设备各部分的作用与调节方法,记下有关数据。

- 2. 向测压板上的小水箱及 U 型测压管 1、2 中加水至 1/2 液位处,检查各测压管内是否有气泡,应排出气泡使各测压管水柱高度齐平。
- 3. 根据倾斜测压需要,可上下滑动小水箱,改变测压管中的水位高度。将实验试件装入实验段中,按测点 $1\sim16$ 顺序连接到测压管的 $3\sim18$ 上(8%厚弦比实验试件按测点 $1\sim15$ 顺序连接到测压管的 $3\sim17$ 上),测压管 19 通大气。
- 4. 开启风机后,记下测压板与水平面的夹角 α ,将测速毕托管的 p_{∞} 端与 U 形管 1 的其中一端相连(另一端保持与大气相通),记下 h_{∞} 值(注意读数的正负值),再将测速毕托管的 p_{0} 端与 U 形管 1 的另一端相连,测出(h_{0} - h_{∞})值,同时测出各测压点的读数值 h_{i} 。
- 5. 改变机翼的冲角 β , 5min 后,再次测量在 β 冲角下的机翼表面压力分布,将实验数据记录到实验数据记录表中(以 12%机翼模型测试为例)。

姓名

6. 实验完毕后,关闭风机。

专业

五、实验数据记录

日期				也点					
同组同学									
	<i>b</i> = 153(mm	室温	t = (℃) 须	则压夹角α=	= (°)	气体密	·度ρ=	(kg/m^3)
	厚弦比:	%,冲	角 <i>β</i> =0°	厚弦比:	%, 冲力	角 <i>β</i> = °	厚弦比:	%,冲1	角 <i>β</i> = °
x/l	h_0 - h_∞	h_i	h_{∞}	h_0 - h_∞	h_i	h_{∞}	h_0 - h_∞	h_i	h_{∞}
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
				Λ',					
			1						

天煌科技 - 15 - 天煌教仪

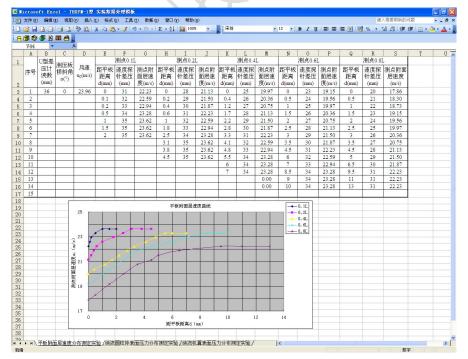
六、实验报告

- 1. 整理实验数据,列出一组完整的计算式。
- 2. 画出不同冲角下 $C_p = f(x/l)$ 曲线图。

七、思考题

- 1. 分析机翼表面压力分布曲线变化的成因?
- 2. 改变冲角后, 曲线会有什么变化, 为什么?

附实验一 平板附面层速度分布测定实验数据范例


1. 实验数据

	测点(测点(测点(测点(测点	
序号	距平板 距离 d(mm)	速度 探针 差压 (mm)								
1	0	31	0	28	0	25	0	23	0	20
2	0.1	32	0.2	29	0.4	26	0.5	24	0.5	21
3	0.2	33	0.4	30	1.2	27	1	25	1	22
4	0.5	34	0.6	31	1.7	28	1.5	26	1.5	23
5	1	35	1	32	2.2	29	2	27	2	24
6	1.5	35	1.8	33	2.8	30	2.5	28	2.5	25
7	2	35	2.5	34	3.3	31	3	29	3	26
8			3.1	35	4.1	32	3.5	30	3.5	27
9			3.8	35	4.8	33	4.5	31	4.5	28
10			4.5	35	5.5	34	6	32	5	29
11					6	34	7	33	6.5	30
12					7	34	8.5	34	9.5	31
13							9	34	11	31
14							10	34	13	31

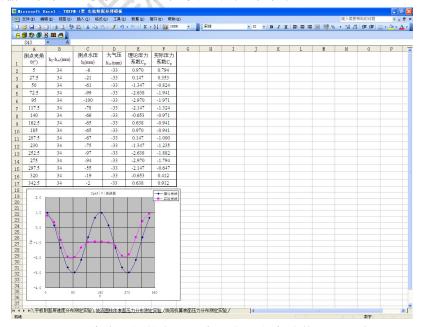
附图 1 平板附面层速度分布测定实验数据

2. 实验结果

打开 "THXFM-1型 实验数据处理模板",选中 "平板附面层速度分布测定实验"。将记录的实验数据输入数据处理模板即可得到该实验结果,如附图 2 所示。

附图 2 平板附面层速度分布测定实验数据处理结果

附实验二 绕流圆柱体表面压力分布测定实验数据范例


1. 实验数据

θ(°)	$h_{\infty}(\mathrm{mm})$	h_0 - h_∞ (mm)	$h_i(mm)$
5	-33	34	-6
27.5	-33	34	-21
50	-33	34	-61
72.5	-33	34	-99
95	-33	34	-100
117.5	-33	34	-78
140	-33	34	-66
162.5	-33	34	-65
185	-33	34	-65
207.5	-33	34	-67
230	-33	34	-75
252.5	-33	34	-97
275	-33	34	-94
297.5	-33	34	-55
320	-33	34	-19
342.5	-33	34	-2

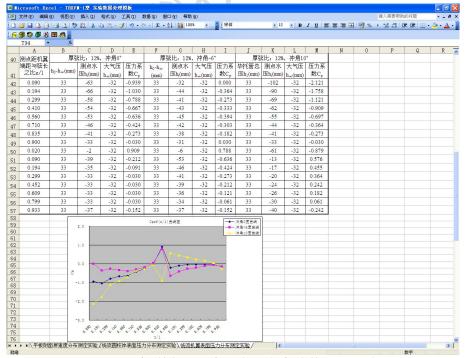
附图 3 绕流圆柱体表面压力分布测定实验数据

2. 实验结果

打开 "THXFM-1型 实验数据处理模板",选中"绕流圆柱体表面压力分布测定实验"。将记录的实验数据输入数据处理模板即可得到该实验结果,如附图 4。

附图 4 绕流圆柱体表面压力分布测定实验数据处理结果

附实验三 绕流机翼表面压力分布测定实验范例(以12%机翼模型为例)


1. 实验数据

	厚弦比: 12%, 冲角β=0°			厚弦比:	12%,冲	角β=-6°	厚弦比: 12%, 冲角β=10°		
x/l	h_0 - h_∞	h_i	h_{∞}	h_0 - h_∞	h_i	h_{∞}	h_0 - h_∞	h_i	h_{∞}
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
0.090	33	-63	-32	33	-32	-32	33	-102	-32
0.194	33	-66	-32	33	-44	-32	33	-90	-32
0.299	33	-58	-32	33	-41	-32	33	-69	-32
0.410	33	-54	-32	33	-43	-32	33	-62	-32
0.560	33	-53	-32	33	-45	-32	33	-55	-32
0.710	33	-46	-32	33	-42	-32	33	-44	-32
0.835	33	-41	-32	33	-38	-32	33	-41	-32
0.900	33	-33	-32	33	-31	-32	33	-33	-32
0.020	33	-2	-32	33	-6	-32	33	-61	-32
0.090	33	-39	-32	33	-53	-32	33	-13	-32
0.194	33	-35	-32	33	-46	-32	33	-17	-32
0.299	33	-33	-32	33	-41	-32	33	-20	-32
0.452	33	-33	-32	33	-39	-32	33	-24	-32
0.609	33	-33	-32	33	-36	-32	33	-26	-32
0.799	33	-33	-32	33	-34	-32	33	-30	-32
0.933	33	-37	-32	33	-37	-32	33	-40	-32

附图 5 12%机翼表面压力分布测定实验数据

2. 实验结果

打开 "THXFM-1型 实验数据处理模板",选中 "绕流机翼表面压力分布测定实验"。将记录的实验数据输入 12%的数据处理模板即可得到该实验结果,如附图 6。

附图 6 12%机翼表面压力分布测定实验数据处理结果